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A model of irregular single-lane traffic flows on a ring road is proposed, with a number of fundamental differences from those 
traditionally examined i:a continuum mechanics. Even in the simplified version of the examination of single-lane traffic, the model 
enables a correct qualitative and quantitative description to be obtained of the conditions for ensuring maximum carrying capacity 
and for the occurrence and evolution of traffic jams on roads. © 2000 Elsevier Science Ltd. All rights reserved. 

In the available mathematical models describing road traffic along a single-lane arterial road from the 
point of view of continuum mechanics [1-4], use is made of the classical of continuity equation, 
supplemented either with algebraic conditions expressing the empirical relationship between flow rate 
and speed [1, 2] or with source terms [4] or with a one-dimensional hydrodynamic equation of motion 
[3], which introduces into the model such properties of a compressible medium as the two-way 
propagation of disturbances, the absence of constraints on speeds and accelerations, etc. Therefore, 
transport flows, characterized by a number of specific properties such as the one-way propagation of 
weak disturbances, the presence of several type of wave of strong discontinuities and a constraint on 
speeds and accelerations, cannot be described using normal hydrodynamic models. 
Two-way transport flows have also been investigated using the continuity equation alone [5]. 
In this paper, a traffic model is proposed that contains both the continuity equation and a differential 
equation of motion that takes into account the reaction of the driver to a change in the road situation 
and the technical characteristics of the vehicle. 

1. M O D E L  O F  T H E  T R A F F I C  F L O W  A L O N G  A N  A R T E R I A L  R O A D  

We will examine the one-way flow of vehicles along an arterial road with single-lane traffic. Crossroads 
and the presence of traffic lights will be taken into account by appropriate boundary conditions. We 
will introduce an Eulerian coordinate system x along the arterial road in the traffic flow direction and 
the time t. We will introduce the average flow density p(x, t) as the ratio of the area of the lane occupied 
by vehicles to the area of the entire lane section examined 

p = h l n l ( h L ) ,  O < ~ p ~  < 1  

where h is the width of the lane. L is the length of the monitored section, l is the average length of a 
vehicle and n is the number of vehicles on the monitored section. 

We will introduce the flow speed v(x, t), which can vary in the range 0 <~ v ~< Vm, where Vm is the 
speed limit. From the definitions it follows that the maximum density p = 1 corresponds to a situation 
where vehicles are positioned practically bumper to bumper, in this case it is natural to assume that 
v = 0, i.e. that a jam has formed on the road. 

Conventionally calling 

L 
m=[ pax 

0 

the "mass" concentrated on a section of length L, it is possible to write the changes in "mass" on the 
arterial road. For a continuous flow of vehicles, the following continuity equation will occur 

p, + (pu}~ = 0 (1.1) 
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In writing the equation of the change in the amount of traffic, we will take account of the fact that 
changes in speed are determined by the technical characteristics of the vehicle (the maximum 
acceleration and emergency braking) and by the reaction of the driver to a change in the road situation 
(a change in the density and speed of the vehicles in front). Then the equation of motion becomes 

1"~'4(a)H(-p.,u,,), v = 0 [ a  ÷, a .  a a ÷ 
do laj . l  . ---:-=~ (-pxux~, 0 < v < u m ;  a = ~ a , ,  - c x - < a . < a  + 

at [otH(-a)H(-pxvx),  u = u  m L - a - ,  a . ~ - a -  

a .  = -k2p-lp.r 

(1.2) 

where H(x)  = {1 whenx I> 0; 0 whenx < 0} is the Heaviside step function, a + is the maximum possible 
acceleration of  the vehicle and et- is the deceleration of the emergency breaking; these quantities are 
positive and are determined by the technical characteristics of the vehicle. The parameter k, as will be 
seen below, characterizes the rate of propagation of small disturbances (the "speed of sound" in traffic 
flow); to a first approximation, we will assume that the parameter k is constant. 

It can be seen from (1.2) that, in a regular traffic situation, the actions of the driver are dictated by 
the flow density gradient px and the density p itself. When the flow density increases (Px > 0) the driver 
slows down (or < 0), when the flow density decreases (Px > 0) he accelerates (a > 0) and in a stable 
situation (p~ = 0) he travels at a constant speed (or = 0). Equation (1.2) also allows for the fact that, 
when there is a local increase in the flow density in front (Px > 0), given a simultaneous increase in the 
speed of the vehicles in front (~x > 0), the driver anticipates a subsequent reduction in density and 
maintains a constant speed (or = 0). When slow-moving vehicles appear in front (vx < 0), the driver 
does not alter his speed (or = 0) while they are a considerable distance ahead (Px < 0) and begins to 
react as they are approached (Px ~> 0). Furthermore. Eq. (1.2) includes a constraint on the vehicle speed 
in the range 0 ~< v <~ v,n. 

An analysis of relation (1.2) indicates that the given model, unlike those examined earlier, has no 
direct hydrodynamic analogy and takes into account the traffic flow constraints on the speed and 
acceleration of individual elements and the features of the reaction of the driver to a change in the 
road situation. 

We will examine the case of regular traffic. In this case, Eq. (1.2) takes the form 

v t +uu~ +k2p-Jpx : 0  (1.3) 

and, together with Eq (1.1), forms a system of two quasilinear hyperbolic type equations. Its 
characteristics in the (x, t) plane C + and C-,  and the conditions along them are as follows: 

C ± : d x l d t = v  +k,  pdv =Tkdp (1.4) 

The characteristics C + and C-  carry information on any change in the road situation in the flow direction 
and in the opposite direction respectively. 

A specific feature of traffic flows and existing systems of traffic organization is that the propagation 
of information is one way in the upstream direction. For waves propagating to the left, in the upstream 
direction, in the case of the flow with constant parameters, the Riemann integral occurs 

-tJ 0 = k ln(po/p) (1.5) 

We will will assume that, for zero flow speed, the vehicles are standing on the arterial road bumper 
to bumper and their density is a maximum (P0 = 1 when ~ = 0). Then, from integral (1.5), taking account 
of the constraints on the maximum speed (v ~< aJ m ) ,  it is possible to obtain the following relation for 
the flow speed 

u ( p ) = I - k l n p ,  e -~*'lk <p~< I (1.6) 
Lu,n, O < p ~ e  ~*'/k 

The graph of the function q(9) = go, defining the traffic capacity of a single-lane road (Fig. 1), indicates 
that maximum traffic capacity (MTC) is achieved for a density p = 1/e and a speed v = k. 

To estimate the rate of propagation of disturbances k, we will make the following assumptions 
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Fig. 1. 

concerning the properties of the flow. Suppose, starting from a state of rest (v = 0; p = 1) and accelerating 
to ~m, the flow reaches its maximum permissible density p. guaranteeing traffic safety. The safe density 
will be taken to meran that for which the distances between vehicles are no shorter than the braking 
distance X(v). Then the maximum permissible density at speed ~r~ will be defined by the equality 

p. = (1 + X ( u , ) / l )  -~ 

where l is the characteristic length of the vehicle. On the other hand, from the Riemann integral for 
on acceleration wave (1.5), the density that can be achieved in it is determined by the final traffic speed 
and by the rate of  propagation of disturbances k 

p ,  = e-Vra Ik 

Then the rate of  propagation of disturbances k is defined by the formula 

k =v  m/In( l  + X ( v m ) l l  ) 

At Vm = 80 km/h, the braking distance of a VAZ-type vehicle is 45 m, which, for an average vehicle length of 5 m, 
gives a rate of propagation of disturbances k = 35 km/h, and estimates of the maximum acceleration a+ and braking 
deceleration et- [formula (1.2)] for vehicles of this class a + = 1.63 m/s 2 and a -  = 5.5 m/s 2. 

An analysis was made in [6] of experimental data from traffic observations in the Lincoln Tunnel in New York, 
showing that the dependence of the speed on the flow density is approximated quite well by an expression of type 
(1.6). Here, the coefficient k, determined from experimental data, amounted to k = 17.2 miles/h ~ 28 km/h. The 
lower k value obtained in the experiment is probably due to the fact that the real flow density is always slightly 
lower than the maximum permissible density (p < p.) for the purposes of increasing traffic safety. 

Experiments in the Lincoln Tunnel [6] showed that the MTC of the tunnel of 1430 vehicles per hour was achieved 
for a density of 83 vehicles per mile. Here, the maximum dimensional density fSm Was 228 vehicles per mile. This 
indicates that the density with the MTC is pm = 83/228 ~ 0.36, which is in good agreement with the theoretically 
determined value pm= 1/e ~ 0.37. The formula for the MTC in dimensional variables qm = k~m gives qm -- 17.3 
x 83 = 1436 vehicles per hour, which again is in good agreement with experiment. 

Experiments on the Merritt Parkway [3] showed that a MTC of 1300 vehicles per hour was achieved with a density 
Pm "~" 80 vehicles per mile with a maximum density in a state of rest of 215 vehicles per mile, which gives p,~ ~- 0.37 

l/e, again in good agreement with theoretical conclusions. 

2. A N A L Y S I S  OF S O M E  S O L U T I O N S  OF T H E  S Y S T E M  OF E Q U A T I O N S  

We will examine simple waves propagating to the left, in the upstream direction. For these waves, 
the characteristics C-:  dx/dt = v - k will be straight lines, while the characteristics C + will be 
curvilinear. The Riemann integral (1.5) holds over the entire region of the simple wave. Changes in 
the rate of  propagation of small disturbances in relation to the flow speed and density are respectively 
equal to 

d(o - k ) /  du = l, d(v - k ) /  d p = - t c / p  

from which it follows that the slope of the characteristics along the trajectory increases when the speed 
increases and the density decreases and decreases when the speed decreases and the density increases. 
Thus, acceleration waves are characterized by fan-like diverging characteristics, while deceleration waves 
braking are characterized by converging curves. In the latter case, intersection of the curves is possible, 
leading to the emergence of a gradient catastrophe and a region of multiple valued solution. Therefore,  
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it is necessary to supplement the model by taking into account the possible emergence of strong 
discontinuities. 

The conditions on the surface of a strong discontinuity for the model examined, obtained by writing 
Eqs (1.1) and (1.3) in integral form, are as follows: 

p l ( D  - ul) = p2(D - u2) (2 .1)  

pl((D - ul) 2 + k 2) = Pz((D -u2) 2 + k 2) (2.2) 

Wc will consider possible solutions of problems of the decay of discontinuities under the initial 
conditions. Suppose that, when x = x0, there is a discontinuity 

u=ul, P=Pl when x<x0; u =u 0, P=P0 when X>Xo. 

Then, when vl < ~, a centred acceleration wave propagates in the upstream in direction, which in 
the downstream direction, with the speed of the flow, a contact discontinuity propagates (Fig. 2a). In 
a continuous acceleration wave, the speed increases from 131 to ~, and the density decreases to a value 
P2 = Pl exp [(131 -- Vo)/k]. On the contact surface k there is a discontinuity in density. Note that 
a solution of the centred-wave type has a singularity when t = 0 and x = x0 and holds when 
t > 13,n/ct +. 

When 131 > v0, a deceleration wave braking in the form of a strong discontinuity propagates in the 
upstream direction against the flow. Two types of solution are possible. For a relatively small speed 
difference (131 - -  130) the solution is shown in Fig. 2(b). 

The wave speed D and the density of the braked flow P2 are determined from relations (2.1) and 
(2.2) 

(a) 

;:z ,,'K 

142 -~ 1401 ~" 

I 
0 Pv, " Po. Vo 

(b) 
l 

,~ . K 

p,. v , . .  "N ' . ' ' "  P0, Vo 

(c) 

t T ~"- pz=l , ._-~ 

0 [ Pl, v ~  D 
o Xo 

Fig. 2. 
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D--~-(IJ j + o 0 -  A), p2 = 4 ~ ( u i  -t/o + A)2 (2.3) 

A---- 4(vl -u0)  2 +4k 2 

This solution holds so long as the condition 

A < 2kp~ ~ - ( v  t - v  0) (2.4) 

which ensures that the density P2 does exceed its maximum value, is satisfied. When this condition is 
not satisfied, the solution has the form shown in Fig. 2(c). 

A deceleration wave propagates in the upstream direction the flow at a speed 

D =v s - kp~ J4 (2.5) 

which, under certain conditions, may be carried downstream to the right by the flow. Behind the wave 
a steady speed 

u2 =ul  - kp~'J~(l-pt) (2.6) 

A packing wave propagates is established in the downstream direction at a rate. 

D. =(vj - v o ) l ( 1 - P o ) + V  o - k p ' l  ~ >v 0. 
(2.7) 

The packing wave: in this case is referred to the wave propagating in the downstream direction, behind 
which the medium density is equal to the final maximum possible value and cannot increase any further. 
This distinguishes the waves examined fundamentally from gas-dynamic strong discontinuities, imposing 
different conditions on the wave propagation velocity. The condition D.  > ~ arises if condition (2.4) 
is not satisfied, and hence 

vl -Vo > kP/J~( I -Po)  

Note that the speed of the packing wave (2.7) was determined using the condition for the conservation 
of mass flow, which has the form of (2.1). The condition for the conservation of the momentum flux 
for the packing wave has a form different from (2.2) and is used to determine the unknown stresses 
that arise when physical contact is established between the system elements. 

3. S O L U T I O N  OF A M O D E L  P R O B L E M  

We will construct the solution of a model problem of the dynamics of traffic on a one-way ring road. 
Suppose there is a traffic lane of  length L where the boundary conditions when x = 0 are the values of 
the solution whenx = L. Suppose that, at the initial instant of time, stationary vehicles are concentrated 
in a section xl < x < x2 and have a density P0 < l (v0 = 0). Suppose the values of the characteristic 
speeds for the system examined are ~ = 3Vand k = 2V, which allows the existence of "subsonic" and 
"supersonic" traffic modes. We will also assume that a+L >> V 2 and et-L >> V 2. The traffic wave pattern 
is shown in Fig. 3. 

When the discontinuity at the point x = x2 decays, a centred acceleration wave is formed, in which 
the vehicles accelerate to the speed ~m and then travel at constant speed. The main characteristic of 
the acceleration wave (x = x2 - kt)  propagates to the left, in the upstream direction. The "tail" of the 
wave also propagates in the upstream direction, but the latter characteristic [x = x2 + (vm - k) t] is 
taken away to the right by the flow. The main flow of vehicles travels uniformly: x = x2 + Vmt. When 
the condition x2 - xl > L/(1 + v,,/k),  which occurs in the given problem (x2 - xl > 2L/5), is satisfied, 
the leading vehicles after a certain time (at the point x = xl) encounter stationary vehicles still not reached 
by the acceleration wave. The flow slows down until it arrests entirely. A acceleration wave 
x = xl  - Dt  propagates in the upstream direction at a speed D = - V. The braked flow remains at rest 
until the leading characteristic of the acceleration wave reaches it, after which the flow acceleration 
again occurs (but more smoothly). A typical example of the trajectory of motion is shown in Fig. 3 by 
the dashed line. 
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Fig. 3. 

After a certain time, the leading characteristic of the acceleration wave (x = x 2 - -  2Vt)  catches up 
with the deceleration wave (x = x l  - Vt). At the point where they interact the expanding region where 
a general solution of the system exists has its origin. This region is bounded by the characteristics C- 
and C °. 

The density and speed distribution profiles for three successive instants of time are presented in 
Fig. 4. It can be seen that the traffic speed (the dashed lines) increases linearly in the acceleration wave 

-3/2 from 0 to urn. However, the flow density decreases exponentially from Po to poe . In the deceleration 
wave the density then increases to p = 4poe-3/2 < Po. Graphs of the density and speed distribution for 
all instants of time pass through the same points whenx = x2; p = poe-1 and v = k for all values oft. 

4. NUMERICAL SOLUTION OF THE PROBLEM OF I R R E G U L A R  
TRAFFIC ON A RING ROAD 

The system of equations obtained was solved numerically by the flow correction method [7] with second 
order of accuracy. Here, the initial and boundary conditions corresponded to the example examined 
in Section 3. Accurate analytical solutions obtained for initial instants of time t ~ 3.5 (Fig. 4) were used 
as a test for the numerical algorithm selected. An analysis of the results of the numerical solution - the 
density distribution (Fig. 5), the speed distribution (Fig, 6) and the capacity distribution (Fig. 7) for 
the corresponding time - indicates that it possesses the accuracy required. The inevitable "blurring" 
of the leading edge in the numerical implementation leads to the appearance of a "forerunner" of low 
density, also travelling at maximum speed, but this does, not spoil the traffic pattern obtained as a whole. 

P 
1.0 

0.5 _3~t 
p=,po . 

0 

V" 

P= Po I 

xl x2 L x 

Fig. 4. 
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Figure 5 gives density profiles for successive instants of time. It can be seen that, after the accelerations 
wave interacts with the deceleration wave, the latter begins to weaken but continues to propagate in 
the upstream direction, reaches x -- 0 and then appears at x = L (the lower part of Fig. 5). 

An analysis of the traffic carrying capacity profiles (Fig. 7) shows the MTC is reached when x = x2, 
when the flow speed is equal to the local speed of sound v = k, and the density p = l/e, which is consistent 
with the theoretical conclusions. 

The results of the numerical solution indicate that a traffic jam arises as time passes; on a single- 
lane ring road. This jam moves in the flow, upstream directions. Within the jam there is a drop in speed 
(but not a complete halt) and an increase in density, on the whole leading to a small reduction in carrying 
capacity. As time passes the amplitudes of the change in the defining parameters in the traffic jam 
decrease. 

On entering such a jam, vehicles reduce their speed sharply and then smoothly accelerate to their 
former speed. Something similar to a jam may be encountered at considerable distances from the point 
of the initial congestion. 

The example considered is characterized by a fairly high average traffic density on the ring road. 
Therefore steady traffic on the road is characterized by the average speed, which is considerably lower 
than the speed limit on the given road: Vm = 3V. Here, the carrying capacity q established on the road 
(Fig. 7) is near optimum. 
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5. C O N C L U S I O N S  

A comparison of the model proposed with models which exist in the literature indicates that the proposed 
model takes account of constraints on the speed and acceleration of individual elements of the traffic 
flow, and also the technical characteristics of the vehicles and features of the reaction of the driver to 
a change in the road situation. By virtue of this, the problem has no direct hydrodynamic analogy. The 
medium examined (traffic flows) has a number of differences from those traditionally examined in 
continuum mechanics: the existence of finite constraints on speeds, accelerations (positive and negative) 
and density, one-way propagation of weak disturbances and the possibility of the existence of different 
waves of strong discontinuity. 

The model developed enclose a correct qualitative and quantitative description to be given of such 
characteristics and of the emergence and evolution of traffic jams on arterial roads. 
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